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Accurate fruit detection is crucial for automated fruit picking. However, real-

world scenarios, influenced by complex environmental factors such as

illumination variations, occlusion, and overlap, pose significant challenges to

accurate fruit detection. These challenges subsequently impact the

commercialization of fruit harvesting robots. A tomato detection model named

YOLO-SwinTF, based on YOLOv7, is proposed to address these challenges.

Integrating Swin Transformer (ST) blocks into the backbone network enables

the model to capture global information by modeling long-range visual

dependencies. Trident Pyramid Networks (TPN) are introduced to overcome

the limitations of PANet’s focus on communication-based processing. TPN

incorporates multiple self-processing (SP) modules within existing top-down

and bottom-up architectures, allowing feature maps to generate new findings for

communication. In addition, Focaler-IoU is introduced to reconstruct the original

intersection-over-union (IoU) loss to allow the loss function to adjust its focus

based on the distribution of difficult and easy samples. The proposed model is

evaluated on a tomato dataset, and the experimental results demonstrated that

the proposed model’s detection recall, precision, F1 score, and AP reach 96.27%,

96.17%, 96.22%, and 98.67%, respectively. These represent improvements of

1.64%, 0.92%, 1.28%, and 0.88% compared to the original YOLOv7 model. When

compared to other state-of-the-art detection methods, this approach achieves

superior performance in terms of accuracy while maintaining comparable

detection speed. In addition, the proposed model exhibits strong robustness

under various lighting and occlusion conditions, demonstrating its significant

potential in tomato detection.
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1 Introduction

Fruit harvesting is a critical step in the agricultural production

process. However, traditional manual methods are costly, time-

consuming, and inefficient, complicating meeting large-scale

cultivation demands. Due to the advancement of smart

agriculture, the transition from manual labor to automated fruit

harvesting has become an inevitable trend. For fruit harvesting

robots, accurate fruit identification and localization are essential for

efficient harvesting. Therefore, it is very important to develop robust

and accurate fruit detection algorithms for the robotic

vision systems.

Over the past few decades, numerous researchers have explored

various fruit detection methods. These approaches are generally

categorized into threshold discrimination and machine learning-

based methods. Initially, the fruit targets in images are segmented

by setting thresholds based on simple features such as color (Wei

et al., 2014), shape (Kelman and Linker, 2014), texture (Rakun et al.,

2011), or a combination of these features (Payne et al., 2014), to

complete the detection process. Although these methods yield

reasonable results, the sensitivity of the thresholds to

environmental variations limits their generalization capabilities.

The introduction of machine learning has mitigated these

limitations. Traditional techniques, which integrate handcrafted

features such as Histogram of Oriented Gradients and Haar

features with machine learning models like Support Vector

Machine (SVM) (Liu et al., 2019) and AdaBoost (Zhao et al.,

2016), have been employed to locate and recognize fruits.

Following the success of deep learning in computer vision

(Krizhevsky et al., 2012), it has been applied to smart agriculture

(Sa et al., 2016; Fuentes et al., 2017). Deep learning models are adept

at directly extracting features from data and facilitating end-to-end

training, significantly enhancing the models’ detection performance

and efficiency.

Despite the significant advancements in deep learning-based

fruit detection methods, several shortcomings persist. These models

are typically trained on data from controlled conditions, resulting in

reduced robustness against unconstrained factors in real-world

environments, such as illumination variations and occlusion or

overlap occurrences. In addition, the traditional IoU-based

regression loss function utilized in the YOLO model cannot

accurately predict the position of fruit targets. Due to the

limitations inherent in traditional regression methods, which

neglect the distribution of objects across different scales, they can

fail to accurately identify the location of fruit targets, particularly in

challenging scenarios.

In order to address these challenges, this study introduces a

novel YOLO-SwinTF model, designed to enhance the accuracy of

tomato detection in complex environments while maintaining high

detection efficiency. Based on the YOLOv7 architecture, the model’s

backbone, neck, and loss function are refined to improve feature

extraction and target-focusing capabilities. Specifically, Swin

Transformer blocks are incorporated into the backbone to aid the

model in capturing long-range visual dependencies while

maintaining computational efficiency, thereby enhancing the

semantic information of the features. Then, the original PANet is
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replaced with the TPN architecture by embedding multiple SP

modules between the traditional top-down and bottom-up

architectures. This modification allows the feature mapping to

generate new information for propagation. In addition, a Focaler-

IoU loss is constructed using a linear interval mapping method to

adjust its focus based on sample difficulty, improving the model’s

detection performance.

The main contributions to this study are as follows:
1. A novel network architecture, YOLO-SwinTF, is proposed,

which incorporates the Swin Transformer attention

mechanism and Trident Pyramid Network architectures

to enhance feature extraction capabilities.

2. The Focaler-IoU loss is introduced to accurately identify

tomato locations. This method enhances the detection

performance of the model by dynamically adjusting the

focus of the loss among samples of varying difficulty.

3. Extensive experiments on tomato datasets demonstrate that

the proposed YOLO-SwinTF model achieves excellent

performance compared to the current state-of-the-art

methods for tomato detection.
The remainder of this paper is organized as follows: Section 2

reviews the literature on fruit detection methods, which include

threshold-based discriminant analysis, machine learning, and deep

learning approaches. Section 3 introduces the proposed tomato

detection model. The experimental results obtained through the

proposed method are presented and discussed in Section 4. Finally,

Section 5 concludes the study.
2 Related work

2.1 Threshold-based discriminant methods

In the early days, researchers employed simple features such as

color, shape, and texture to detect fruits. Kurtulmus et al. (2011)

developed a method for detecting and counting green citrus fruits in

natural environments using color images. They introduced a novel

“eigenfruit” approach that incorporated color, circularity, and Gabor

texture analysis to identify the fruits. Then, a shifting sub-window

technique was applied at three different scales to scan the image and

localize the fruits. In their study, 73% of green fruits were correctly

identified. Ji et al. (2012) established an automatic vision recognition

system to guide apple harvesting robots. Images of the apples were

captured using a color charge-coupled device camera. An industrial

computer processed and recognized the apples. A vector median filter

removed noise from the color images of the apples, and an image

segmentation algorithm based on region and color features was

applied. The study reported an accuracy of 89% with an average

detection time of 352 ms. Chaivivatrakul and Dailey (2014)

developed a texture-based fruit detection approach. This method

utilizes interest-point feature extraction and descriptor computation.

A low-cost web camera suitable for mechanized systems evaluated 24

combinations of interest-point features and descriptors for

pineapples and bitter melons. The method achieved an accuracy of
frontiersin.org
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85% for the single-image detection of pineapples and 100% for bitter

melons. Jana and Parekh (2017) proposed a shape-based fruit

recognition approach, which included a pre-processing step that

normalizes fruit images to account for translation, rotation, and

scaling differences. This method then employed features unaffected

by variations in distance, growth phase, and surface appearance of the

fruits for detection. The proposed method was applied to a dataset of

210 images covering seven different fruit classes, achieving an overall

recognition accuracy between 88% and 95%.

Although threshold-based discriminant methods have

demonstrated reasonable effectiveness in detecting fruits, their

performance significantly depends on the appropriateness of the

selected thresholds. This dependence can result in limited model

generalization and diminish detection robustness.
2.2 Traditional machine learning-
based methods

Due to the development of machine learning, many researchers

have attempted to apply it to fruit detection. Methodologies include

Adaboost (Payne et al., 2014), Random Forests (Samajpati and

Degadwala, 2016), and SVM (Behera et al., 2020). Using machine

vision and SVM, Peng et al. (2018) conducted a study on detecting

different classes of fruit, such as apples, bananas, citruses,

carambolas, pears, and pitaya. The process involved using a

Gaussian filter and histogram equalization for image processing,

followed by segmentation with the Otsu method. To extract

features, researchers employed shape-invariant moments and

synthesized the color and shape of fruits. An SVM was then used

to classify and detect the fruits, achieving detection rates of 95% for

apples, 80% for bananas, 97.5% for citrus fruits, 86.7% for

carambola, 92.5% for pears, and 96.7% for pitaya. Jiao et al.

(2020) proposed a detection and localization method for

overlapping apples, which began with the transformation and

segmentation of apple images using the Lab color space and K-

means algorithm. Morphological processes such as erosion and

dilation were applied to delineate the apple edges. In addition, a fast

algorithm calculated the minimum distance from each interior

point to the apple outline, determining the radii by identifying

the shortest distance from the center to the edge. Zhu et al. (2021)

developed a carrot detection method by extracting deep features

from a three-layer fully connected layer of network models and

integrating these with an SVM. Their most effective model

combined ResNet101 with an SVM, achieving an accuracy of

98.17%. Yu et al. (2021) proposed a method for identifying ripe

litchi using an RGB-D camera in natural environments. Their

approach utilized both color and depth images for litchi

detection. Initially, depth image segmentation was employed to

eliminate redundant image information outside the effective range

of the manipulator. A random forest binary classification model was

then trained using color and texture features to detect litchi fruits,

achieving detection accuracies of 89.92% for green litchis and

94.50% for red litchis.

Although machine learning has significantly advanced fruit

detection, these methods predominantly rely on handcrafted
Frontiers in Plant Science 03
features and possess inherent limitations. Their capacity to

abstract features is restricted, confining them to simple scenarios

and limiting their generalization capabilities. In addition, the

models lack end-to-end learning , which diminishes

learning efficiency.
2.3 Deep learning-based methods

In recent years, deep learning-based approaches have emerged as

powerful alternatives. In particular, convolutional neural networks

(CNN) have shown remarkable success in learning discriminative

features directly from raw image data without needing handcrafted

features. CNN-based architectures such as Faster R-CNN (Ren et al.,

2015), YOLO (Redmon et al., 2016; Redmon and Farhadi, 2017, 2018;

Bochkovskiy et al., 2020; Wang et al., 2023), and SSD (Liu et al., 2016)

have been widely used for fruit detection. Bargoti and Underwood

(2017) proposed a deep model for detecting fruits in orchards, based

on Faster R-CNN (Ren et al., 2015), to detect mangoes, almonds, and

apples. This method achieved an F1 score of 90% for mangoes and

apples. Ganesh et al. (2019) utilized Mask R-CNN (He et al., 2017) to

detect individual fruits and obtain pixel-wise masks for each detected

fruit in an image, achieving an overall F1 score of approximately 89%.

Despite the advancements in two-stage methods that use separate

networks to predict bounding boxes and class probabilities from an

input image, these are not well suited for real-time applications.

Recently, YOLO algorithms have been proposed to address this

issue using a single CNN to predict and classify objects. Hernández

et al. (2023) developed a tomato detection and classification method

based on YOLOv3-tiny (Redmon and Farhadi, 2018), achieving an F1
score of 90% for detecting ripe tomatoes. Guo et al. (2023) employed

YOLOv7 for the real-time detection of ripe tomatoes, using an

improved RepLKNet (Ding et al., 2022) to enhance the receptive

field. In addition, the head structure of YOLOv7 was redesigned to

address the issue of low FLOPS, and FasterNet (Chen et al., 2023) was

used to optimize the structure between the Concat and CBS in the

head. ODConv (Li et al., 2022) was added to improve the feature

extraction for small tomatoes, achieving an mAP (0.5:0.95) of 56.8%

with a detection time of 0.0127 s. Zeng et al. (2023) proposed a

lightweight modified YOLOv5 for real-time localization and ripeness

detection of tomatoes, achieving an mAP of 96.9% with a detection

speed of 42.5 ms. Mbouembe et al. (2023) developed an efficient

tomato detection method based on YOLOv4, incorporating an

improved BottleneckCSP, a modified CSP-SPP, and CARAFE into

the YOLOv4 architecture to enhance the feature expression

capabilities of the model. This method achieved an mAP of 98.5%.

Wang et al. (2024c) developed a grape detection algorithm based on

YOLOv5s, introducing a dual-channel feature extraction attention

mechanism (Li et al., 2017) and a dynamic snake convolution

(Qi et al., 2023) in the backbone network to improve feature

extraction. The mAP (0.5:0.95) was 69.3%. Gao et al. (2024)

established an improved binocular calyx localization method based

on YOLOv5x to detect kiwifruit, achieving an mAP of 93.5% with a

detection speed of 105 ms per image.

Despite advances in deep learning-based fruit detection, several

challenges remain. Variability in fruit appearance due to uneven
frontiersin.org
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illumination, overlap, and occlusion poses a challenge for accurate

detection. In addition, the presence of similar-looking objects and

background clutter further complicates this task.
3 Materials and methods

3.1 Image acquisition

The tomato dataset for this study was collected at the

Shouguang Vegetable High-Tech Demonstration Park in

Shandong Province, China between 2017 and 2019. The

acquisition equipment utilized was a Sony digital camera (Sony

DSC-W170, Tokio, Japan) with a resolution of 3648 × 2056 pixels.

This study collected 966 tomato images under various

environmental conditions, including sunlight, shade, overlap, and

occlusion. Considering that the dataset is not large, additional

splitting could lead to a smaller training set, which is prone to

overfitting (Ashtiani et al., 2021). Therefore, we divided the data

into training and test sets at a ratio of 3:1, following (Liu et al., 2022;

Jia et al., 2023). The training dataset comprised 725 images

featuring 2553 tomatoes, whereas the test set included 241 images

with 912 tomatoes. Figure 1 displays a selection of example images

captured under various environmental conditions.
3.2 Image augmentation

The study applied data augmentation techniques to the

collected images to enhance the generalization capability of the

trained model and prevent overfitting. This resulted in a final set of

4350 enhanced images, achieved through horizontal flipping,

scaling and cropping, brightness transformation, color balancing

and blurring, as shown in Figure 2. For brightness transformation, a

random factor ranging from 0.6 to 1.4 was employed to modulate

pixel intensity, simulating the effects of diverse weather conditions
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on image brightness. Scaling and cropping were performed

according to the methods described by Liu et al. (2020). During

this phase, images without labels were discarded. The Gray World

algorithm (Lam, 2005) was employed for color balancing to mitigate

the impact of lighting on color rendering. Then, random blurring

was applied to the augmented images to mimic the indistinct visuals

that can result from camera motion. Table 1 lists the total number

of resulting images after data augmentation.
3.3 YOLOv7 model

YOLOv7 (Wang et al., 2023) is an anchor-based detection

method among the widely used YOLO algorithms. Like other

iterations in the YOLO series, this version comprises three

components: a backbone network for feature extraction; a neck

network that fuses and refines the extracted features, yielding large,

medium, and small feature sets; and a head network that utilizes

these features from the neck to generate prediction outputs.

YOLOv7 developed a new backbone network called

EfficientRep, which is a redesigned and improved version of the

EfficientNet architecture (Tan and Le, 2019). This new backbone

network includes different modules: E-ELAN, MPConv, and

SPPCSPC. The E-ELAN module is an extended version of the

ELAN (Wang et al., 2022). The original ELAN was designed to

address the problem of convergence in deep models, which can

gradually deteriorate as the models scale. E-ELAN maintains the

same gradient flow as ELAN, but increases cardinality through

group convolution. The MPConv module strikes a balance between

increasing representat ional capacity and maintaining

computational efficiency. The SPPCSPC module is a combination

of the SPP module (He et al., 2015) and the CSP module (Wang

et al., 2020). The SPP module captures features at different spatial

resolutions, which is beneficial for detecting objects of various sizes.

The CSP module then facilitates the flow of information between

different stages and concatenates the output of the SPP module with
FIGURE 1

Tomato samples with different growing circumstances: (A) separated tomatoes, (B) a cluster of tomatoes, (C) occlusion case, (D) overlap case,
(E) sunlight case, and (F) shade case.
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the previous stage’s feature maps, creating a richer and more diverse

feature representation.

The neck network combines relevant feature maps from the

backbone network using the PANet architecture (Liu et al., 2018)

for feature fusion. In addition, YOLOv7 uses the RepConv

technique (Ding et al., 2021) to address the challenges of

detect ing objects at various scales by enhancing the

representability of feature maps. This technique also improves the

inference results, although it increases the training time by

introducing gradient diversity and allowing for more complex

feature representations.

The head network uses anchor boxes to predict the objects’

position, size, and class in the input image. Subsequently, a post-

processing technique known as Non-Maximum Suppression

(NMS) is employed to refine the predicted object boxes by

eliminating redundant detections, enhancing the accuracy

of YOLOv7.
3.4 The proposed YOLO-SwinTF

This study introduces the YOLO-SwinTF model, an

advancement based on YOLOv7, to enhance the accuracy and

robustness of tomato detection in complex environments. Figure 3

illustrates the architecture of the proposed YOLO-SwinTF model.

It integrates three innovative modules to enhance the feature

expression capability, improving the detection accuracy.

Initially, ST blocks were incorporated into the backbone

network , enabl ing the mode l to capture long-range

dependencies efficiently. Subsequently, the TPN architecture
Frontiers in Plant Science 05
replaced the original PANet in the neck network. This

replacement was achieved by embedding multiple SP modules

within the existing top-down and bottom-up architectures,

facilitating the generation and effective propagation of new

information within the feature maps. Finally, a Focaler-IoU loss

was constructed using a linear interval mapping method. This

method dynamically adjusts its focus based on the difficulty of the

samples, significantly enhancing the detection capabilities of the

model. Further details are provided in Sections 3.4.1 – 3.4.4.

3.4.1 Swin Transformer block
Although CNN networks can effectively extract local features,

they are limited in capturing global features, impacting the final

detection performance. In order to address this limitation, the

current study introduces the attention mechanism of the Swin

Transformer (Liu et al., 2021) to enhance the model’s long-range

dependencies. Unlike traditional Transformer structures, the Swin

Transformer employs a hierarchical attention mechanism. In this

structure, a sliding window performs attention computations

separately at different layers, diverging from the standard multi-

head self-attention (MSA) module. This approach not only

facilitates the extraction of global information through long-

distance modeling but also reduces the computational complexity

of the original attention method. Figure 4 indicates that a Swin

Transformer module primarily comprises a LayerNorm (LN) layer,

a window-based multi-head self-attention (W-MSA) module, a

shifted window-based multi-head self-attention (SW-MSA)

module, a two-layer multi-layer perceptron (MLP) with a GELU

non-linear activation function between layers , and a

residual connection.
TABLE 1 The number of training images after data augmentation.

Original Honrizontal
flip

Scaling
and cropping

Brightness
transformation

Color
balancing

Blurring Total

No. of images 725 725 725 725 725 725 4350
FIGURE 2

Data augmentation of tomato images: (A) original image, (B) horizontal flip, (C) scaling and cropping, (D) brightness transformation, (E) color
balancing, and (F) image blurring.
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FIGURE 4

The Swin Transformer blocks.
FIGURE 3

The architecture of the proposed YOLO-SwinTF.
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Figure 4 shows that two consecutive Swin Transformer blocks

are computed using Equations 1-4 (Liu et al., 2021):

ẑ l = W − MSA(LN(zl−1)) + zl−1 (1)

zl = MLP(LN(ẑ l)) + ẑ l (2)

ẑ l+1 = SW − MSA(LN(zl)) + zl (3)

zl+1 = MLP(LN(ẑ l+1)) + ẑ l+1 (4)

where ẑ l denotes the output of the (S)W-MSA module and zl

denotes the output of the MLP module of the lth block.

In order to enable the model to capture global information, the

first four CBS modules in YOLOv7 were replaced with four

successive ST blocks, thus expanding the network’s receptive field

and enriching contextual information, as depicted in Figure 3.

3.4.2 Trident Pyramid Network architecture
As discussed by Picron and Tuytelaars (2022), existing feature

pyramid networks (FPN, PANet, and BiFPN) primarily focus on

communication-based processing, enhancing feature fusion

through top-down and bottom-up operations. These networks

can become saturated with communication when multiple

communication-based operations are performed consecutively,

reducing efficiency. Accordingly, this study introduces the TPN

architecture to replace PANet in YOLOv7, which achieves a better

balance between communication-based processing and self-

processing by alternating top-down and bottom-up operations

and parallel self-processing mechanisms.

Specifically, the TPN architecture consists of traditional top-

down and bottom-up operations and parallel SP modules, as

illustrated in Figure 5. An SP module consists of several

consecutive base self-processing layers, each designated as a

bottleneck layer, as depicted in Figure 6.

Multiple SP modules were explicitly embedded between the

original top-down and bottom-up architectures. As shown in
Frontiers in Plant Science 07
Figure 3, the SP module was added after the SPPCSPC and

ELAN-W modules in the bottom-up architecture. In addition, the

SP module processed the features again after being merged into the

top-down architecture. In this manner, communication-based

processing is alternated with self-processing, enabling feature

mapping to generate new information for delivery. The TPN

architecture controls the amount of self-processing through the

hyperparameter, the number of layers in the SP module, N, which is

set to 2 in this study.
3.4.3 Focaler-IoU-based regression loss
The accuracy of bounding box localization is critical to target

detection performance. However, existing studies often overlook

the impact of the distribution of difficult samples (small targets that

are difficult to accurately localize) and easy samples (targets that are

easy to detect) on bounding box regression. This oversight can

result in suboptimal performance and a lack of robustness in

challenging scenarios. To address this issue, this study introduces

Focaler-IoU (Zhang and Zhang, 2024) to enhance detector

performance in the tomato detection task by effectively focusing

on different regression samples.

Specifically, the Focaler-IoU reconstructs the original IoU loss

through a linear interval mapping method that allows the loss

function to adjust its focus according to the distribution of difficult

and easy samples. The reconstructed Focaler-IoU IoUfocaler is

expressed as follows (Zhang and Zhang, 2024):

IoUfocaler =

0, IoU < d

IoU−d
u−d , d ≤ IoU ≤ u

1, IoU > u

8>><
>>:

(5)

where IoU is the original IoU value, and d and u are both in the

range of [0,1]. Adjusting the values of d and u can guide IoUfocaler to

focus on different regression samples. In this study, d and u were set

to 0.1 and 0.9, respectively. Accordingly, the Focaler-IoU loss

LFocaler−IoU is defined below:
FIGURE 5

The TPN architecture. TD, BU and SP denotes top down, bottom up and self-processing modules, respectively.
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LFocaler−IoU =  1  – IoUfocaler (6)

Referring to Zhang and Zhang (2024), the Focaler-IoU loss is

applied to the original CIoU-based bounding box regression loss

used in YOLOv7, resulting in a novel regression loss as follows:

Lreɡ = LCIoU + IoU − IoUfocaler (7)

Where LCIoU is expressed as follows (Zheng et al., 2020):

LCIoU = 1 − IoU +
d2(b, bɡt)

c2
+ bv (8)

where d( · ) denotes Euclidean distance. b and bɡt denote the

central points of the predicted and ground truth bounding boxes,

respectively. b represents a positive trade-off parameter and v

quantifies the consistency of the aspect ratio, as detailed below.

v =
4
p2 arctan 

wɡt

hɡt
− arctan 

w
h

� �2

(9)

b =
v

(1 − IoU) + v
(10)

Combining Equations 7 and 8, we obtain the final regression

loss as follows:

Lreɡ = 1 − IoUfocaler +
d2(b, bɡt)

c2
+ bv (11)

This approach enables the loss function to dynamically adjust

its focus between easy and difficult samples, enhancing the

performance of the model in the detection task. Simultaneously,

the adjustment of the loss function allows the model to concentrate

more on positive samples that are difficult to classify and less on

negative samples that are easy to classify. This adjustment effectively

improves the model’s response to the imbalance between difficult

and easy samples.

3.4.4 Loss function
As in YOLOv7 (Wang et al., 2023), the loss function of the

proposed model consists of three parts, i.e., the regression loss Lreɡ,

confidence loss Lconf , and classification loss Lcls, and is expressed as

follows:

Ltotal = lreɡLreɡ + lconf Lconf + lclsLcls (12)
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where lreɡ, lconf and lcls were set to 5, 1, and 1, respectively, to

balance the different losses. Lreɡ, Lconf , and Lcls are expressed in

Equations 11, 13 and 14, respectively.

Lconf = o
s�s

i=1
o
NB

j=1
li,j½−Cilog ~Ci�

o
s�s

i=1
o
NB

j=1
(1 − li,j) −(1 − Ci)log (1 − ~Ci)

� � (13)

Lcls = o
s�s

i=1
o
NB

j=1
li,j o

a∈classes 

½pi(a)log ~pi(a) + (1 − pi(a))log (1 − ~pi(a))� (14)

where s � s denotes the grid cell size, and NB is the number of

bounding boxes. ~Ci and Ci represent the confidence of the predicted

box and the confidence threshold, respectively. li,j equals 1 if the jth

bounding box falls in the ith grid cell and 0 otherwise. ~pi and pi denote

the predicted and ground truth class probabilities, respectively.
4 Experimental results and discussion

4.1 Experimental environment

Our experiments were conducted on a server with a 43GB Intel

(R) Xeon(R) Platinum 8255C CPU operating at 2.50GHz and an

NVIDIA GeForce RTX 3090 GPU. The server runs Ubuntu 18.04 as

its underlying operating system. The proposed model was

implemented using the PyTorch framework.

The model was trained with an input resolution of 640 × 640

pixels and a batch size of 32. The SGD optimizer was employed for

training with a momentum of 0.937 and a weight decay of 0.0005. A

cosine annealing schedule was applied to control changes in

learning rates, starting with an initial learning rate of 0.001. The

training was carried out over 160 epochs. The hyperparameters

used in this study are listed in Table 2.
4.2 Evaluation metrics

For a thorough evaluation of the performance of the proposed

method, the recall (R), precision (P), and F1 score (Sa et al., 2016) were

adopted as evaluation metrics. These metrics are defined as follows.
FIGURE 6

The architecture of a base self-processing layer. C1 and C3 denote convolution operations with kernel sizes of 1 and 3, respectively.
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P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

F1 =
2� P � R

P + R
(17)

where TP, FP, and FN denote true positive (correct detection),

false positive (false detection), and false negative (missing

detection), respectively.

In addition, this study employed Average Precision (AP)

(Everingham et al., 2010) to assess the overall performance of the

detection system. AP is defined as follows:

AP = o
n
(rn+1 − rn)pinterp(rn+1) (18)

pinterp(rn+1) = max
~r :~r≥rn+1

p(~r) (19)

where p(~r) is the measured precision at a recall level of ~r.
4.3 Ablation study

This study integrated three components, ST block, TPN, and

Focaler-IoU, into the detection model to enhance its performance.

An ablation study was conducted to assess the effectiveness of each

modification within the proposed model. The results are presented

in Table 3 and Figure 7. When the ST block, TPN, and Focaler-IoU

are implemented individually, the detection performance improves
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regarding recall, precision, and AP. Due to the incorporation of the

ST block, recall, precision, and AP increased by 0.49%, 0.23%, and

0.19%, respectively, compared to the original YOLOv7 model. This

improvement results from the ability to learn global contextual

features by establishing long-range dependencies. Including TPN

raised the F1 score and AP by 0.45% and 0.36%, respectively.

Replacing the original IoU with Focaler-IoU led to increases in

the F1 score and AP of 0.28% and 0.31%, respectively, attributed to

the effectiveness of the reconstructed regression loss in handling

difficult small targets. The simultaneous use of the ST block and

TPN in the model resulted in the F1 score and AP of 95.81% and

98.33, increases of 0.51% and 0.35% over using the ST block alone,

and 0.42% and 0.18% over using TPN alone. Combining the ST

block and Focaler-IoU yielded an increase of 0.21% in both F1 score

and AP compared to using the ST block alone. When the TPN

module was paired with the Focaler-IoU, the F1 score and AP

reached 95.71% and 98.20%, improvements of 0.32% and 0.05%

over using TPN alone and 0.49% and 0.1% over using Focaler-IoU

alone. Ultimately, integrating all three modules simultaneously

enabled the proposed model to achieve optimal detection

performance, with F1 score and AP reaching 96.22% and 98.67%,

respectively. Therefore, the effectiveness of the three enhancement

methods – ST block, TPN, and Focaler-IoU-based regression loss –

is verified.
4.4 Comparison of different models

A comparative study was conducted alongside leading detection

algorithms currently utilized in the field to assess the effectiveness of

the newly proposed YOLO-SwinTF model. This study included

sophisticated models such as Faster R-CNN (Ren et al., 2015),

CenterNet (Zhou et al., 2019), YOLOv4 (Bochkovskiy et al., 2020),

YOLO-Tomato (Liu et al., 2020), YOLOv5 (Jocher, 2020),

TomatoDet (Liu et al., 2022), YOLOv7 (Wang et al., 2023),

YOLOv8 (Jocher et al., 2023), YOLOv9 (Wang et al., 2024b), and

YOLOv10 (Wang et al., 2024a). Among these models, Faster R-

CNN belongs to the two-stage detection models, whereas the others

belong to the single-stage detection models. In addition, CenterNet

and TomatoDet are categorized as anchor-free models, while the

remaining models rely on anchors for detection. The
TABLE 3 Ablation study on different components of YOLO-SwinTF.

ST Block TPN Focaler-IoU Recall (%) Precision (%) F1 (%) AP (%)

94.63 95.25 94.94 97.79

✓ 95.12 95.48 95.30 97.98

✓ 95.37 95.41 95.39 98.15

✓ 95.05 95.40 95.22 98.10

✓ ✓ 95.81 95.82 95.81 98.33

✓ ✓ 95.42 95.60 95.51 98.19

✓ ✓ 95.72 95.70 95.71 98.20

✓ ✓ ✓ 96.27 96.17 96.22 98.67
TABLE 2 The hyperparameter settings of YOLO-SwinTF.

Hyperparameter Value

Initial learning rate 0.001

Weight decay 0.0005

Momentum 0.937

Batch size 32

Epochs 160
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hyperparameters used for the comparative study, as specified in the

original papers (Ren et al., 2015; Zhou et al., 2019; Bochkovskiy

et al., 2020; Jocher, 2020; Liu et al., 2020, 2022; Jocher et al., 2023;

Wang et al., 2023, 2024a, b), are listed in Table 4. Table 5 displays

the detection performance metrics for all detection models,

including recall, precision, F1 score, AP, and average detection

time. Precision-recall (PR) curves are illustrated in Figure 8.

Table 5 shows that the proposed model outperforms other

methods in all detection metrics, with the exception of detection

time. In particular, the YOLO-SwinTF model excels in the F1 score

and AP, outperforming the second-ranked YOLOv10 by 0.53% and
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0.21%, respectively. This improvement primarily benefits from

integrating the attention mechanism, TPN architecture, and

Focaler-IoU-based loss. However, in terms of detection speed, the

YOLO-SwinTF model is 12 ms slower than YOLOv10, primarily

due to YOLOv10’s elimination of the post-processing step involving

NMS, facilitated by the introduction of dual label assignments. This

finding paves the way for our future research. Compared to the

baseline model, YOLOv7, the YOLO-SwinTF model shows

increases of 1.64% in recall, 0.92% in precision, 1.28% in F1 score,

and 0.88% in AP, demonstrating the effectiveness of the integrated

modules in YOLOv7. The average detection time of the proposed
TABLE 4 The hyperparameter settings of different algorithms for comparison.

Models Batch size Momentum Weight decay
Initial

learning rate
Learning rate

decay strategy
Epochs

Faster
R-CNN

16 0.9 5 × 10−4 10−3
Divided by
10 after
90 epochs

120

CenterNet
TomatoDet

32 0.9 10−4 1.25 × 10−4

Divided by
10 after
90 and

120 epochs

140

YOLO-
Tomato

32 0.9 5 × 10−4 10−3

Divided by
10 after
60 and

90 epochs

160

YOLOv4
YOLOv5
YOLOv7
YOLOv8

32 0.937 5 × 10−4 10−3 Cosine annealing 160

YOLOv9
YOLOv10

32 0.937 5 × 10−4 10−3

Linear decay
160
FIGURE 7

PR curves of the major components of YOLO-SwinTF for ablation study.
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model is 21 ms per image, fulfilling the requirements for real-time

tomato detection in complex environments.
4.5 Network visualization

The Grad-CAM technique (Selvaraju et al., 2017) was

employed to visualize the features of raw images to illustrate the

superiority of the proposed YOLO-SwinTF intuitively.

Specifically, ten images from the tomato dataset were selected,

and visual experiments were conducted, as shown in Figure 9. The
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experimental results demonstrate that the image feature extractor,

enhanced by the ST block, can capture global information by

modeling long-range dependencies and extracting the most

significant descriptive content from the raw samples. This

capability is primarily attributed to the multi-head self-attention

mechanism, which excels in capturing semantic information. In

addition, the incorporation of TPN architecture facilitates a better

balance between communication-based processing and

self-processing, resulting in generating new information

for propagation.
4.6 Performance of the proposed model
under different lighting conditions

The tomato dataset used in this study was divided into

sunlight and shade groups to evaluate the detection performance

of the proposed model under different lighting conditions. Of all

the test data, 425 tomatoes were in the shade, while the remaining

487 tomatoes were under sunlight. We used the correct

identification rate (or recall), false identification rate, and

missing rate as the evaluation metrics. The falsely identified

tomatoes refer to the detected tomatoes that are actually

background, and the term ‘missed tomatoes’ denotes tomatoes

that the model did not detect. The detection results are listed in

Table 6. As shown in Table 6, under sunlight conditions, 470 out

of 487 tomatoes were correctly detected, with a detection rate of

96.51%. For the shade condition, the detection rate was 96.00%. In

addition, under sunlight conditions, some backgrounds were

incorrectly identified as tomatoes, with a total of 17 such

instances, resulting in an incorrect identification rate of 3.49%.

Under the shade condition, the false identification rate was 4.23%.
FIGURE 8

PR curves of different detection algorithms.
TABLE 5 Tomato detection results of different algorithms.

Methods Recall
(%)

Precision
(%)

F1

(%)
AP
(%)

Time
(ms)

CenterNet 91.56 92.98 92.26 95.75 32

Faster
R-CNN

91.78 92.89 92.33 94.37 231

YOLOv4 92.76 94.11 93.43 93.91 25

YOLO-
Tomato

93.09 94.75 93.91 96.40 54

YOLOv5 93.64 94.57 94.10 97.79 22

TomatoDet 94.30 95.77 95.03 98.16 35

YOLOv7 94.63 95.25 94.94 97.79 15

YOLOv8 95.06 95.59 95.32 97.95 12

YOLOv9 95.19 95.71 95.45 98.21 12

YOLOv10 95.55 95.84 95.69 98.46 9

Proposed 96.27 96.17 96.22 98.67 21
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An analysis of the results indicated that these false identifications

typically occurred when the tomatoes were similar in shape and

color to the background. The above results show that the detection

performance of the proposed model is comparable under both

sunlight and shade conditions, verifying the robustness of the

model to illumination variations. The detection results are shown

in Figure 10.
4.7 Performance of the proposed model
under different occlusion conditions

This study also evaluated the detection performance of the

proposed model under different occlusion conditions, which are

common in real environments. According to the degree of

occlusion of the tomatoes by other objects, tomato data can be

categorized into slight and severe occlusion cases. Severe occlusion
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is defined as the tomatoes being more than 50% occluded by

leaves, branches, or other tomatoes, and conversely, they are

recognized as slight cases, as defined by Liu et al. (2020). We

used the same performance evaluation metrics as in the

experiments under different lighting conditions. Table 7 lists the

test results for different occlusion conditions. As shown in Table 7,

588 out of 609 tomatoes were correctly identified in the slight

occlusion condition, with a detection rate of 96.55%, slightly better

than in the severe occlusion condition. The false identification

rates in the slight and severe occlusion conditions were 3.45% and

4.61%, respectively, indicating that overlap or occlusion can affect

the model’s detection performance. Almost all tomatoes can be

detected when the degree of overlap or occlusion is not very

severe. The semantic loss of images resulting from overlap or

occlusion can be compensated by the model’s attention

mechanism and the implicit contextual information mining of

hierarchical feature extraction. The model’s performance in
TABLE 6 Performance of the proposed model under different lighting conditions.

Illumination Tomato Count Correctly Identified Falsely Identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Sunlight 487 470 96.51 17 3.49 17 3.49

Shade 425 408 96.00 18 4.23 17 4.00
FIGURE 9

Visual features of images from the tomato dataset.
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detecting overlapping and occluded tomatoes can be further

improved by explicitly modeling the contextual environment of

tomatoes. Figure 11 shows some of the detection results.
5 Conclusion

This study proposes a YOLO-SwinTF model designed to

enhance the feature expression capabilities of YOLOv7 to achieve
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accurate tomato detection in complex environments. Initially, the

backbone network of the proposed framework incorporates Swin

Transformer modules to represent global information by modeling

long-range visual dependencies. Subsequently, in the neck network,

the TPN architecture replaces the PANet to better balance

communication-based processing and self-processing, generating

new information for delivery in the feature map. Finally, a novel

regression loss based on Focaler-IoU is constructed in bounding

box regression to allow the loss function to dynamically adjust its
FIGURE 10

Some examples of the detection results under different lighting conditions: (A-C) sunlight conditions, and (D-F) shade conditions.
FIGURE 11

Some examples of detection results under different occlusion conditions: (A-C) slight cases and (D-F) severe cases.
TABLE 7 Performance of the proposed model under different occlusion conditions.

Occlusion
Condition

Tomato Count Correctly Identified Falsely Identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Slight case 609 588 96.55 21 3.45 21 3.45

Severe case 303 290 95.71 14 4.61 13 4.29
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focus between easy and difficult samples, enhancing the model’s

detection performance.

Extensive experiments are conducted to verify the performance

of the proposed method. The F1 score and AP of the proposed

YOLO-SwinTF model reached 96.22% and 98.67%, respectively,

surpassing other state-of-the-art detectors. Ablation studies are

performed to verify the effectiveness of each modification. In

addition, the model demonstrates strong robustness in detecting

tomatoes under various illumination and occlusion conditions. The

experimental results confirm the proposed model is highly suitable

for tomato detection in complex environments.

In the future, the ripeness information of tomatoes at different

growth stages will be utilized to achieve multi-stage tomato

detection. In addition, we plan to implement explicit context

modeling for tomatoes to improve the detection performance of

overlapping and occluded tomatoes.
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